Blow-up solutions forL2supercritical gKdV equations with exactlykblow-up points

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow - up Solutions for Gkdv Equations with K Blow

In this paper we consider the slightly L-supercritical gKdV equations ∂tu + (uxx + u|u|)x = 0, with the nonlinearity 5 < p < 5 + ε and 0 < ε ≪ 1 . In the previous paper [10] we know that there exists an stable selfsimilar blow-up dynamics for slightly L-supercritical gKdV equations. Such solution can be viewed as solutions with single blow-up point. In this paper we will prove the existence of ...

متن کامل

From blow-up boundary solutions to equations with singular nonlinearities

In this survey we report on some recent results related to various singular phenomena arising in the study of some classes of nonlinear elliptic equations. We establish qualitative results on the existence, nonexistence or the uniqueness of solutions and we focus on the following types of problems: (i) blow-up boundary solutions of logistic equations; (ii) Lane-Emden-Fowler equations with singu...

متن کامل

Blow-up collocation solutions of nonlinear homogeneous Volterra integral equations

In this paper, collocation methods are used for detecting blow-up solutions of nonlinear homogeneous Volterra-Hammerstein integral equations. To do this, we introduce the concept of “blow-up collocation solution” and analyze numerically some blow-up time estimates using collocation methods in particular examples where previous results about existence and uniqueness can be applied. Finally, we d...

متن کامل

Blow-up Solutions for N Coupled Schrödinger Equations

It is proved that blow-up solutions toN coupled Schrödinger equations iφjt + φjxx + μj |φj |φj + N X k 6=j, k=1 βkj |φk|k |φj |jφj = 0 exist only under the condition that the initial data have strictly negative energy.

متن کامل

On Blow up of Solutions of Nonlinear Evolution Equations

We give a complete description of domains of blow up for general second order inequalities, which allows us to obtain some new results on nonexistence of global solutions for nonlinear hyperbolic equations, both in Rn and bounded domains.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2017

ISSN: 0951-7715,1361-6544

DOI: 10.1088/1361-6544/aa7765